AEP Protection & Control Design Standards

CREZ System Protection & Control Scheme Development

American Electric Power
AEP P&C Design Standard: Design Modules (DM)

Concept: Modular approach to standardize P&C design for each protection zone

DM06: UHV Transmission Line Protection

DM01: UHV Transformer Protection

DM07: Transmission Line Protection

DM81: Transmission CB Protection/Control

DM17: Transmission Cap Bank Protection and Control

DM16: Transmission Bus Protection

DM21: Distribution Transformer and LV Bus Protection and Control

DM22: Distribution Feeder Protection and Control
Example - DM21: Distribution Transformer and LV Bus Protection and Control

- One Line Diagrams
- Design Notes
- Drawings (Panel Front View, Schematic and Wiring)
- Relay Setting Templates
- Relay Setting Summary Form
- Relay Logic Diagrams
- Standard CID Panels

Total 13 Design Modules
AEP Standard P&C Design Modules (Cont.)

Design Module Index

- Design Module 01 - UHV/EHV Transformer Protection
- Design Module 02 - Subtransmission Transformer Protection
 - DM 02.01 - Subtransmission Transformer w/HS Line MOS, w/HS Switcher, with or without LS CBs
 - DM 02.02 - Subtransmission Transformer w/HS Breaker and Half, Optional HS MOS (No Restoration), with
 - DM 02.03 - Subtransmission Transformer w/HS MOS, with or without LS CBs
- Design Module 06 - UHV Transmission Line Protection
- Design Module 07 - HV Transmission Line Protection - Gen. 2.5
 - DM 07.01 - HV Transmission Line with System 1 DCB & System 2 Step Distance (GE D60, SEL 421)
 - DM 07.02 - HV Transmission Line with System 1 DCB, DTT & System 2 Step Distance (GE D60, SEL 421)
 - DM 07.03 - HV Transmission Line with System 1 DCB, DTT & System 2 DCB (GE D60, SEL 421)
- Design Module 08 - HV Transmission Line Protection - Gen. 2.5
- Design Module 09 - Subtransmission Line Protection - Gen. 2.5
- Design Module 10 - Subtransmission Line Protection - Gen. 2.5
- Design Module 16 - Transmission Bus Protection
- Design Module 17 - Transmission Capacitor Bank Protection
- Design Module 21 - Distribution Transformer and LV Bus Protection
- Design Module 22 - Distribution Feeder and Capacitor Bank Protection
- Design Module 51 - Metering
- Design Module 61 - SCADA, DMS, Communication
- Design Module 66 - DFR, Data Repository, Automation
- Design Module 81 - CB Control and Mechanisms - Gen. 2.5
- Relay Firmware - GE
- Relay Firmware - SEL
Station Standard (SS) Guides: Base for Design Modules

SS-451001	AEP Protection Requirements For Connecting to AEP Transmission Grid
SS-451002	Windfarm Protection Guide
SS-451005	Station IED Settings Management Process
SS-451010	Protective Relay Setting Guide
SS-451011	AEP Relay Reference Manual
SS-451015	Protection & Control Equipment Rating Guide
SS-451018	Protection System Coordination Guide
SS-451019	Procedure for Calculating and Utilizing Protective Relay Loadability Relay
SS-451101	Station Alarm Application Guide
SS-451104	Station Misc Alarm Annunciator Setting Guide
SS-451105	C30 Application Guide
SS-451106	Universal Pnl Alarm Disable Procedure
SS-451107	Gen2.0 765KV T Line C30 Relay
SS-451301	AEP Disturbance Monitoring Equipment Guidelines
SS-462001	Distribution Transformer Relaying Guide
SS-463200	SEL 351R_Cooper Retrofit
SS-465011	Distribution Cross-Tripping Schemes Application Guide
SS-470000	Automatic Equipment Investigation Reporting Guideline
SS-472001	0 SEL351 Transmission Breaker Application Guide Eastern AEP
SS-472002	Breaker Control Replacement Guideline
SS-473001	AEP Planning Guide for Single-Phase EHV Equipment 0603
SS-473101	Transformer Protection T35 Application Guide
SS-473102	EHV 3 Phase Transformer Relay Application Guide
SS-473103	EHV Single Phase Transformer Relay Application Guide
SS-473104	Gen2.1 Subtransmission XFMR Relay App Guide
SS-473105	Gen2.0 Transformer T35 Relay
Catalogue Identity (CID) Based Standard Panel Design

CID: 0077828007

0077828007 0802HV421_S
LINE ABCD, SYSTEM 2 MIRROR BITS, SEL-421
SCHEMATIC DIAGRAM

0077828007 0802HVCMB_F
PANEL pnr, LINE ABCD RELAY SYSTEM 1 CURRENT DIFF & SYSTEM 2 MIRRORED BITS
FRONT VIEW

0077828007 0802HVCMB_W
PANEL pnr, LINE ABCD RELAY SYSTEMS 1 & 2
WIRING DIAGRAM

0077828007 0802HVCTPT_S
LINE ABCD CURRENT & POTENTIAL CIRCUITS
SCHEMATIC DIAGRAM

0077828007 0802HL90_S
LINE-ABCD SYSTEM 1 CURRENT DIFFERENTIAL & SYSTEM 2 MIRRORED BITS, L90
SCHEMATIC DIAGRAM

Customized Panels vs CID Panels

<table>
<thead>
<tr>
<th>Year</th>
<th>CID Panels</th>
<th>Customized Panels</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>2007</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>2008</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>2009</td>
<td>35%</td>
<td>30%</td>
</tr>
<tr>
<td>2010</td>
<td>47%</td>
<td>35%</td>
</tr>
<tr>
<td>2011</td>
<td>600</td>
<td>47%</td>
</tr>
</tbody>
</table>

Bar Chart

- **CID Panels**
- **Customized Panels**
AEP Standard P&C Design Highlights

- System 1 and 2 Relaying Schemes for Transmission
- Redundancy for Bulk Electric System (BES)
- Two Relay Vendors
- Substation Automation Based on Modern IED’s
- IEC61850, Station Data Repository (SDR), etc.
- Reliability Oriented
- Human Performance Improvement
- Efficiency Improvement
- Evolving Standards
AEP Standard P&C Design Highlights (Cont.)

- Line Protection: Communication-aided High Speed Schemes for above 100kV, Dual High Speed for above 200kV
 - High Speed Schemes: DCB, POTT, 87L, DTT

- Separate CB Control relay - Reclosing and CB Failure Prot.

- Bus Protection: Low / High Impedance 87B, Bus 1-Shot for LV Stations

- Transformer Protection: Overall 87T, 87T, Lead 87, Overcurrent, Sudden Pressure, etc.
CREZ : Competitive Renewable Energy Zone

Competitive Renewable Energy Zones (CREZ)
Docket No. 35665
Attachment A
CREZ: Challenges to Protection and Control

- Renewable Energy
- Interconnection
- Redundancy
- Parallel Lines
- Impact of Series Capacitors
- Impact of ShuntReactors
- Communication and NERC-CIP Compliance
- Reactive Power Control
- Other Issues
Wind Farm Low Voltage Ride Through Requirement

- 0.65pu for 18 cycles
- 0.45pu for 9 cycles

NO TRIP ZONE
CREZ Challenge 2: Interconnection

- Interconnection with 6x TSP’s
- Each has its own P&C philosophy and standards
- Changes to existing standards
- Common Goal: System Reliability
Full Redundancy Requirements

- AC Current Source
- AC Voltage Source
- Protective Relay
- Communication Channel
- DC Circuitry
- Auxiliary Trip Relay
- Breaker Trip Coil
- Station DC Source

"Transmission protection systems shall provide redundancy such that no single protection system component failure would prevent the interconnected transmission systems from meeting the system performance requirements" - NERC
CREZ Challenge 4: Parallel Long Lines

- Zero sequence coupling induces false information to relays
- 21G / 67G Overreach or Underreach
- Current Reversal
- Voltage Inversion

\[\text{Relay sees fault in wrong direction} \]
Non-linearity caused by series capacitor and MOV
Voltage inversion and current inversion
Distance relay over-reaching or under-reaching
Sub-synchronous resonance (SSR)
Sub-synchronous Control Interaction (SSCI)

A zero seq. network example
CREZ Challenge 6: Shunt Reactor

- Energizing or reclosing may result in large DC current offset.
- Trip right after closing may cause line breaker failure.
CREZ Challenge 7: Shunt Reactor Switching

- Interrupting inductive current leads to TRV
- CB Switching: Stressful to reactor, turn-to-turn overvoltage
- RLSwitcher: Good for switching but cannot interrupt fault

<table>
<thead>
<tr>
<th>Source Voltage</th>
<th>KV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>436.43907</td>
</tr>
<tr>
<td></td>
<td>298.998</td>
</tr>
<tr>
<td></td>
<td>143.512</td>
</tr>
<tr>
<td></td>
<td>8.932</td>
</tr>
<tr>
<td></td>
<td>-143.448</td>
</tr>
<tr>
<td></td>
<td>-298.824</td>
</tr>
<tr>
<td></td>
<td>-436.4025</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reactor Voltage</th>
<th>KV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.175.01052</td>
</tr>
<tr>
<td></td>
<td>788.273</td>
</tr>
<tr>
<td></td>
<td>394.634</td>
</tr>
<tr>
<td></td>
<td>7.406</td>
</tr>
<tr>
<td></td>
<td>-386.842</td>
</tr>
<tr>
<td></td>
<td>-1.677.977</td>
</tr>
<tr>
<td></td>
<td>-1.167.977</td>
</tr>
</tbody>
</table>

Interrupter Voltage (TRV)

<table>
<thead>
<tr>
<th>Interrupter Voltage (TRV)</th>
<th>KV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.635.61462</td>
</tr>
<tr>
<td></td>
<td>1.028.802</td>
</tr>
<tr>
<td></td>
<td>624.151</td>
</tr>
<tr>
<td></td>
<td>26.581</td>
</tr>
<tr>
<td></td>
<td>-546.313</td>
</tr>
<tr>
<td></td>
<td>-1.070.845</td>
</tr>
<tr>
<td></td>
<td>-1.594.7771</td>
</tr>
</tbody>
</table>

Reactor Current

<table>
<thead>
<tr>
<th>Reactor Current</th>
<th>KA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.21932</td>
</tr>
<tr>
<td></td>
<td>0.14621</td>
</tr>
<tr>
<td></td>
<td>0.07311</td>
</tr>
<tr>
<td></td>
<td>0.07311</td>
</tr>
<tr>
<td></td>
<td>-0.14621</td>
</tr>
<tr>
<td></td>
<td>-0.21932</td>
</tr>
</tbody>
</table>

- Reactor voltage with high frequency
- Fast rise TRV
High speed protection is relying on fiber channel
Redundancy is relying on self-healing SONET ring
Who owns the communication channel for interconnection?
CREZ Challenge 9: Other Issues

- High Transient Recovery Voltage (TRV)
- Induced Voltage and Current - Potential Risks for Maintenance Personnel
- Mitigation of SSCI and SSR
Full Redundancy
- Dual High Speed Primary Protection
- Redundant Communication Channels Using SONET
- Dual Battery Systems, etc.

Optical Fiber-based Current Differential Protection (87L)

Auto-reclosing Schemes

Coordinate the Series Capacitor Protection and Control

Comprehensive Shunt Reactor Control Scheme

Secured Breaker Failure Protection Scheme

State-of-art Relays
Line Differential Protection (87L)

- Simple in Principle: Compare Currents In & Out
- Highly Sensitive and Dependable for Internal Faults
- Highly Secure Against External Faults
- Relying on Good Communication Channel

![Diagram of Line Differential Protection (87L)]
<table>
<thead>
<tr>
<th></th>
<th>PLC-based schemes</th>
<th>Optical fiber-based 87L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Cir. - Mutual Coupling</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Double Cir. - Current Reversal</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Power Swings</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CCVT Transients</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Series-Compensated Line</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Weak Feed Application</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>High Impedance Faults</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cross-country Faults</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Evolving Faults</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
87L Channels – Self Healing SONET Rings

- 87L-1
- 87L-2

Multiplexer

87L Relay

D1
D2

A1
A2

B1
B2

C1
C2

OPGW
- OPGW is shared, SONET ring is NOT
Auto-reclosing Schemes

- Reclose for 1LG faults only
- Single shot, ~30 cycles dead time
- Leader / Follower Scheme:
 - Leader CB tests for hot bus / dead line condition
 - Follower CB reclosing under sync-check condition
- Shunt compensated Line: Anytime the line is de-energized, isolate the shunt reactor.
- Series compensated Line: Bypass series capacitors prior to line CB reclosing
- Series Capacitor Flashover: Automatically isolate the platform before reclosing the line CB
Series Compensated Line Protection & Control

- Faults on the line: Bypass SC before reclosing
- Faults within SC zone: Isolate SC before reclosing
Shunt Compensated Line Protection Schemes

- Faults on the line: Trip CBs and RLSwitcher
- RLSwitcher Failure: Pause reclosing until MOS is open
- Faults within shunt reactor zone: Trip all CBs & MOS, DTT to remote CBs, Delayed trip to RLSwitcher
CREZ & AEP Standards Development

- Enhance the Standards Library
 - Line Protection Using State-of-art Technology
 - Dual DC Battery System Design
 - Shunt Reactor Schemes Enhancement
 - Series Compensated Line Schemes
 - Breaker Control Enhancement
 - Drop-in Control House Design
 - etc.

- Addressing Future needs
 - BES Reliability
 - NERC Standards Compliance

- Human Performance Improvement
Current State of CREZ Projects in AEP/ETT

- Riley North - South 345kV station has 19 breakers, 8 lines, 4x 50MVAR shunt reactors and 2x shunt capacitors. Part of the station was in-service around May 2011.

- Tesla 345kV station has 17 breakers, 8 lines, 4x 50MVAR shunt reactors, 2x 130.9 MVAR shunt capacitors, 2x (-50 to +150 MVAR) SVCs. The construction is ongoing. The Drop-In Control House will be delivered to the site in October, 2011. Planned In-service date is October 2012.

- The majority of the equipment will be in-service the later part of 2012 through 2013.
Questions?